Regular Expressions

Recap from Last Time

Regular Languages

* A language L is a reqgular language it
there is a DFA D such that C(D) = L.

« Theorem: The following are equivalent:

e [is a regular language.
e There is a DFA for L.
e There is an NFA for L.

Language Concatenation

e [f w € 2* and x € X*, then wx is the
concatenation of w and x.

* If L1 and Lz are languages over %, the

concatenation of L1 and L: is the language
L1l> defined as

Lilz ={wx|weé€Liand x € L2 }

« Example: if L1 = { a, ba, bb } and L2 = { aa, bb },
then

Lil.> = { aaa, abb, baaa, babb, bbaa, bbbb }

[.ots and Lots of Concatenation

« Consider the language L. = { aa, b }

« LLL is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

« LLL is the set of strings formed by concatenating triples
of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

« LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

 We can define what it means to “exponentiate” a
language as follows:

o« [0 = {&}
« The set containing just the empty string.

« Idea: Any string formed by concatenating zero strings
together is the empty string.

e [n+1 = [[.n

* Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

* Question: Why define Lo = {g}?
* Question: What is @07

The Kleene Closure

 An important operation on languages is
the Kleene Closure, which is defined as

L*={we€e2X2* | dn € N.w € Ln }
 Mathematically:
welL* iff dne€eN.weln

 Intuitively, all possible ways of
concatenating zero or more strings in L
together, possibly with repetition.

* Question: What is (J0?

The Kleene Closure

If L =4 a,bb}, then L* = {
€,
a, bb,
aa, abb, bba, bbbb,
aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

Think of L* as the set of strings
you can make if you have a
collection of stamps - one for each
string in L - and you torm every
possible string that can be made
from those <tamos.

Closure Properties

» Theorem: If L1 and L2 are regular
languages over an alphabet %, then so are
the following languages:

e I1
e [1 U >
e [1NL>
e [1l.»
° Ll*
 These properties are called closure
properties of the regular languages.

New Stuff!

Another View of Regular Languages

Rethinking Regular Languages

 We currently have several tools for
showing a language L is regular:

e Construct a DFA for L.

e Construct an NFA for L.

 Combine several simpler regular languages
together via closure properties to form L.

 We have not spoken much of this last
idea.

Constructing Regular Languages

e Idea: Build up all regular languages as
follows:

« Start with a small set of simple languages we
already know to be regular.

« Using closure properties, combine these
simple languages together to form more
elaborate languages.

« A bottom-up approach to the regular
languages.

Constructing Regular Languages

e Idea: Build up all regular languages as
follows:

« Start wj
already

 Using g
simple |
elabora

« A bottomn
language

Regular Expressions

* Regular expressions are a way of
describing a language via a string
representation.

 They’'re used extensively in software
systems for string processing and as the
basis for tools like grep and flex.

* Conceptually, regular expressions are
strings describing how to assemble a
larger language out of smaller pieces.

Atomic Regular Expressions

* The regular expressions begin with three
simple building blocks.

* The symbol @ is a regular expression that
represents the empty language .

* For any a € X, the symbol a is a regular
expression for the language {a}.

* The symbol € is a regular expression that
represents the language {¢}.

 Remember: {€} # O!
 Remember: {€} # €!

Compound Regular Expressions

« If R, and R, are regular expressions, R;R, is a

regular expression for the concatenation ot the
languages of R, and R,.

« If R, and R, are regular expressions, R, U R, is

a regular expression for the union of the
languages of R; and R,.

* If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

* If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Regular Expression Examples

 The regular expression helloUgoodbye
represents the regular language { hello,
goodbye }.

 The regular expression helloo* represents
the regular language { hello, helloo,
hellooo, ... }.

 The regular expression (bye)* represents
the regular language { €, bye, byebye,
byebyebye, ... }.

Operator Precedence

 Regular expression operator precedence:
(R)
R*
RlRZ
R, UR,
* S0 ab*cUd is parsed as ((a(b*))c)ud

Regular Expressions, Formally

 The language of a reqular expression is the
language described by that regular expression.

* Formally:
* C(g) = {¢&}
e C(OQ) =0
* C(a) = {a} Worthwhile activity: Apply
« C(RR,)) =C(R, C(R,) this recursive definition
- C(R,UR,) = C(R)) U C(R,) fo

* C(R*) = C(R)*

b d
. CU(R)) = C(R) a(buc)((d))

and see what you gef,

Designing Regular Expressions

e Let X = {4, b}.

e letL ={we€2XZ*| wcontains aa as a
substring }.

Designing Regular Expressions

e Let X = {4, b}.

e letL ={we€2XZ*| wcontains aa as a
substring }.

(a U b)*aa(a U b)*

Designing Regular Expressions

e Let X = {4, b}.

e letL ={we€2XZ*| wcontains aa as a
substring }.

(a U b)*aa(a U b)*

Designing Regular Expressions

e Let X = {4, b}.

e letL ={we€2XZ*| wcontains aa as a
substring }.

(a U b)*aa(a U b)*

bbabbbaabab
aaaa
bbbbbabbbbaabbbbb

Designing Regular Expressions

e Let X = {4, b}.

e letL ={we€2XZ*| wcontains aa as a
substring }.

(a U b)*aa(a U b)*

bbabbbaabab
aa
bbbbbabbbbaabbbbb

Designing Regular Expressions

e Let X = {4, b}.

e letL ={we€2XZ*| wcontains aa as a
substring }.

2*3ax*

bbabbbaabab
aa
bbbbbabbbbaabbbbb

Designing Regular Expressions

e Jet 2 = {a, b}.
cletL={weX*||w| =41}

Designing Regular Expressions

jw| =4

The length of
a string w is
denoted |w

Designing Regular Expressions

e Jet 2 = {a, b}.
cletL={weX*||w| =41}

Designing Regular Expressions

e Jet 2 = {a, b}.
cletL={weX*||w| =41}

2222

Designing Regular Expressions

e Jet 2 = {a, b}.
cletL={weX*||w| =41}

222

Designing Regular Expressions

e Jet 2 = {a, b}.
cletL={weX*||w| =41}

222

adaa
baba

bbbb
baaa

Designing Regular Expressions

e Jet 2 = {a, b}.
cletL={weX*||w| =41}

222

o O O W
U OO0 WL

Designing Regular Expressions

e Jet 2 = {a, b}.
cletL={weX*||w| =41}

24

o O O W
U OO0 WL

Designing Regular Expressions

e Jet 2 = {a, b}.
cletL={weX*||w| =41}

24

“EEE
baba

bbbb
baaa

Designing Regular Expressions

e et 2 = {a, b}.

« Let L = { w € 2* | w contains at most one a }.

Here are some candidate regular expressions for
the language L. Which of these are correct?

2%a2*
b*ab* U b*
b*(a U &£)b*
b*a*b* U b*
b*(a* U g)b*

Designing Regular Expressions

e et 2 = {a, b}.

 Let L = { w € Z* | w contains at most one a }.

b*(a U €)b*

Designing Regular Expressions

e et 2 = {a, b}.

 Let L = { w € Z* | w contains at most one a }.

b* b*

Designing Regular Expressions

e et 2 = {a, b}.

» LetL = { w € 2* | w contains at most one a }.
b* b*

bbbbabbb
bbbbbb
abbb
a

Designing Regular Expressions

e et 2 = {a, b}.

» LetL = { w € 2* | w contains at most one a }.
b* b*

bbbbabbb
bbbbbb
bbb

Designing Regular Expressions

e et 2 = {a, b}.

» LetL = { w € 2* | w contains at most one a }.
b*a?b*

bbbbabbb
bbbbbb
bbb

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cs103
first
dot

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa*

cs103
first
dot

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa*

cs103
first.middle. last
dot.at

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)*

cs103
first.middle. last
dot.at

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)*

cs103@
first.middle. last(@
dot.at@

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)* (@

cs103@
first.middle. last(@
dot.at@

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)* (@

cs103@cs.stanford
first.middle. last@mail.site
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa*

cs103@cs.stanford
first.middle. last@mail.site
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa*

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

a* (.aa*)* @ aa*.aa* (.aa*)*

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

a* (.aa*)* @ aa*.aa* (.aa*)*

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.
a* (.a*)* @ a*.a* (.a")*
cs103@cs.stanford.edu

first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

a* (.a*)* @ a* (.a")*

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

A More Elaborate Design

e Llet2 =14, .,@}, where a represents
“some letter.”

* Let's make a regex for email addresses.

a*(.a*)*@a*(.a")’

cs103@cs.stanford.edu
first.middle. last@mail.site.org
dot.at@dot.com

For Comparison

a*(.a*)*@a*(.a")’

Shorthand Summary

R” is shorthand for RR ... R (n times).
 Edge case: define R® = ¢.

> is shorthand for “any character in 2.”

R? is shorthand for (R U €), meaning
“zero or one copies of R.”

R" is shorthand for RR*, meaning “one or
more copies of R.”

Time-Out for Announcements!

Problem Sets

* Problem Set Four was due at 3:00PM
today.

* Problem Set Five goes out today. It’s due
next Friday at 3:00PM.

« Play around with DFAs, NFAs, regular
expressions, and their properties!

 Explore how all the discrete math topics
we’ve talked about so far come into play!

“Practice Midterm” Exam

 We’ve released a completely optional “practice
midterm” exam composed of what we think is a
good representative sample of older midterm
questions from across the years, covering
topics from the first half of the course.

* There is no midterm in this course, but we
recommend taking some time in the next week
to actually sit down and try taking this exam to
check your understanding of what we’ve
covered so far.

Back to CS103!

The Power of Regular Expressions

Theorem: If R is a regular expression,
then C(R) is regular.

Proof idea: Use induction!

 The atomic regular expressions all represent
regular languages.

 The combination steps represent closure
properties.

* So anything you can make from them must
be regular!

Thompson’s Algorithm

* In practice, many regex matchers use an
algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAS).

 Read Sipser if you’'re curious!

 Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of
Unix!

The Power of Regular Expressions

Theorem: It L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

Generalizing NFAs

Generalizing NFAs

Generalizing NFAs

These are all
reqular expressions:

Generalizing NFAs

tart
star q(yabub

ab*

a
@ a*b?a*

@

Note: Actual NFAs
aren't allowed to have
fransitions like these,
This is just a thought

experiment,

Generalizing NFAs

tart
star qOJabUb

a ab*

Generalizing NFAs

tart
star q(yabub

a ab*

Generalizing NFAs

tart
star qOJabUb

a ab*

Generalizing NFAs

tart
star qOJabUb

a ab*

Generalizing NFAs

tart
star q(yabub

a ab*

Generalizing NFAs

tart
star q(yabub

a ab*

Generalizing NFAs

tart
star q(yabub

a ab*

Generalizing NFAs

tart
star q(yabub

a ab*

Generalizing NFAs

tart
star q(yabub

a ab*

Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular
expressions.

Generalizing NFAs

start do ab U b

Generalizing NFAs

start do abub

Is there a simple

reqular expression for
the language of this
generalized NFA?

Generalizing NFAs

Is there a simple
reqular expression for
the language of this
generalized NFA?

Generalizing NFAs

start do a*(.a*)*@a*(.a*)"*

Generalizing NFAs

start do a*(.a*)*@a*(.a*)"

Is there a simple

reqular expression for
the language of this
generalized NFA?

Generalizing NFAs

Is there a simple
reqular expression for
the language of this
generalized NFA?

Key Idea 2: If we can convert an NFA into
a generalized NFA that looks like this...

start ' some-regex
CZO b '

...then we can easily read off a regular
expression for the original NFA.

From NFAs to Regular Expressions

Rll R22
Rlz
start q, R21

From NFAs to Regular Expressions

Rll R22
R12
start
HeYe, 211, 212, 221, aV\d 222 are
arbitrary regular expressions,

From NFAs to Regular Expressions

Rll R22
Rlz
start q, R21

Question: Can we get a clean
regular expression trom this
NFA?

From NFAs to Regular Expressions

Rll R22
Rlz
start q, R21

Key Idea 3: Somehow transtorm
This NFA so that it looks like

' 1
start ' some-regex
qO M e ’

From NFAs to Regular Expressions

Rll R22
Rlz
start q, R21
The first step is going to be a
bit weird..

From NFAs to Regular Expressions

Rll R22
R12

From NFAs to Regular Expressions

R R

11 22

e R1z S
star
(@) "{(a) = @

From NFAs to Regular Expressions

R R

11 22

c A R12 e
SOROREO

From NFAs to Regular Expressions

R R

11 22

c A R12 e
@@ » ©

From NFAs to Regular Expressions

Rll R22
£ et £
star
OROERO
Could we

eliminate this

state trom the
NFA?

From NFAs to Regular Expressions

R R

11 22

c A R12 e
@ @ - ©

From NFAs to Regular Expressions

From NFAs to Regular Expressions

Note: We're using
concatenation and
Kleene closure in order
To skip this state,

From NFAs to Regular Expressions

From NFAs to Regular Expressions

From NFAs to Regular Expressions

From NFAs to Regular Expressions

From NFAs to Regular Expressions

From NFAs to Regular Expressions

From NFAs to Regular Expressions

Rll* R12

From NFAs to Regular Expressions

Rll* R12

S
star

N
R,, UR, R, * R,

Note: We're using union
fo combine these
Transitions together,

From NFAs to Regular Expressions

star qs () '

R, UR, R,

From NFAs to Regular Expressions

star qs () '

R, UR, R,

From NFAs to Regular Expressions

star qs () '

R, UR, R,

From NFAs to Regular Expressions

From NFAs to Regular Expressions

What should we put
on this transition?

From NFAs to Regular Expressions

R, *R,,(R,,UR R, *R)*¢

217711

From NFAs to Regular Expressions

R, *R,,(R,,UR R *R)*¢

217711

From NFAs to Regular Expressions

R, *R,,(R,,UR R *R)*¢

217711

From NFAs to Regular Expressions

'Rll>I< R12 (R22 U R R *RIZ)*

217711

From NFAs to Regular Expressions

star q Rll* R12 (Rzz U R21R11*R12)>|<

From NFAs to Regular Expressions

star q Rll* R12 (Rzz U R21R11*R12)>|<

R R

11 22

Rlz
start q, R21

The Construction at a Glance

« Start with an NFA N for the language L.

« Add a new start state g, and accept state g, to the
NFA.

 Add an e-transition from g, to the old start state of N.

« Add e-transitions from each accepting state of N to ¢,
then mark them as not accepting.

« Repeatedly remove states other than g, and g;

from the NFA by “shortcutting” them until only
two states remain: g, and g;.

« The transition from ¢, to ¢; is then a regular
expression for the NFA.

Eliminating a State

 To eliminate a state g from the automaton, do the following
for each pair of states gqo and g1, where there's a transition
from qgo into g and a transition from g into qa:

- Let R, Dbe the regex on the transition from qo to q.
- LetR_ Dbe the regex on the transition from q to qu.

- If there is a regular expression R, on a transition from g

to itself, add a new transition from qo to g: labeled
(R,) (R, J*¥(R,,)).

o If there isn't, add a new transition from qo to g: labeled
((R,)(R,,))

« If a pair of states has multiple transitions between them
labeled R1, Rz, ..., Rk, replace them with a single transition
labeled R1 U R2 U ... U R«.

Our Transftformations

direct conversion state elimination

DFA NFA Regexp

subset construction Thompson's algorithm

Theorem: The following are all equivalent:

- L. is a regular language.
- There is a DFA D such that C(D) = L.

- There is an NFA N such that C(N) = L.
- There is a regular expression R such that C(R) = L.

Why This Matters

 The equivalence of regular expressions and
finite automata has practical relevance.

» Tools like grep and flex that use regular
expressions capture all the power available via
DFAs and NFAs.

* This also is hugely theoretically significant:
the regular languages can be assembled
“from scratch” using a small number of
operations!

[.et’s take a five minute break!

G W@
o @ =

O&REO O&0 OREOREO

RERERERERE 00000 OREOO OREOREREREORE
RERED REGRE é
OREOREORE OREREREREREREREREO

. _
NS—
———
S—

OOOREREREREREREOOO OREREREREOOOOOOOOO

Oreo Sandwiches

e JletX={0,R}

For simplicity, let’s just use a single
character for the ‘*cream* part of the
Oreo :)

Oreo Sandwiches

e Jet2={0,R}
Design a DFA for the language

L ={weZX*|w = ¢ and the first and last
character of w are the same }

Oreo Sandwiches

e Jet2={0,R}
Design a DFA for the language

L ={weZX*|w = ¢ and the first and last
character of w are the same }

ORO € L OR ¢ I,
- ROOOR € L - 00O0OOR ¢ I.

OROORORRO € I. RORORORO ¢ L

Designing DFAs

* States - pieces of information

« What do I have to keep track of in the
course of figuring out whether a string is in
this language?

* Transitions - updating state

 From the state I'm currently in, what do I
know about my string? How would reading
this character change what I know?

An Analogy

Imagine a scenario where Bob is thinking of a
string and Alice has to figure out whether that
string is in a particular language

961820

o

Alice Bob

L = { wis divisible by 5 }

An Analogy

The catch: Bob can only send Alice one character at
a time, and Alice doesn’t know how long the string
is until Bob tells her that he’s done sending input

961820

o

< 9

Alice Bob

L = { wis divisible by 5 }

An Analogy

What does Alice need to remember
about the characters she’s receiving
from Bob?

L = { wis divisible by 5 }

o

< 9

Alice Bob

An Analogy

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { wis divisible by 5 }

o

Alice Bob

An Analogy

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { wis divisible by 5 }

o

< 6

Alice Bob

An Analogy

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { wis divisible by 5 }

o

Alice Bob

An Analogy

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { wis divisible by 5 }

o

Alice Bob

An Analogy

Eventually Bob gets to the end of his
string and sends Alice a signal that
he’s done sending input

L = { wis divisible by 5 }

o

-

Alice Bob

An Analogy

At this point, Alice just has to look at the
last digit she wrote down and if it’s a 5 or
0, Bob’s string belongs in the language

L = { wis divisible by 5 }

o

-

Alice Bob

DFA Design Strateqgy

1. Answer the question “What do I have to keep track of in the
course of figuring out whether a string is in this language?”

2. Create a state that represents each possible answer to that
question.

3. From each state, go through all of the characters and answer the
question “How would reading this character change what I know
about my string?” and draw transitions to the appropriate states.

DFA Design Strateqgy

L = { wis divisible by 5 }
1. Answer the question “What do I have to keep track of in the

course of figuring out whether a string is in this language?”
We need fo keep frack of the last character.

2. Create a state that represents each possible answer to that
question.

The last character could be any digit 0—4, The stafes for 0 and s
are accepling sTates,

3. From each state, go through all of the characters and answer the
question “How would reading this character change what I know
about my string?” and draw transitions to the appropriate states.
Reading a character d should fransifion fo the state representing ‘the
last character of the string is o,

Oreo Sandwiches

e Jet2={0,R}
Design a DFA for the language

L ={weZX*|w = ¢ and the first and last
character of w are the same }

What do I have to keep track of in the
course of figuring out whether a string is
in This language?

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

« We need to keep track of the very first character

« And we need to keep track of the last character
we’ve read so that when we reach the end, we
can check whether the first and last characters
were the same

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

start O

& Remember that each state should represent

a piece of intformation, We’ll annotate what

each state represents in blue,

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

start We need to keep track of the
»O very first character, which
could either be an 0 or an R
E

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

first

character
is O <:::::::>

start We need to keep track of the
G very first character, which

could either be an 0 oran R

e
first O

character
is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

first

character
is O

0

If I'm in the start state and
I read an 0, I should
transition to this state

start

E
first O

character
is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

first

character
is O

start

Likewise if I'm in the start
state and I read an R, I
should transition to this state

first

character
is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

first

character
is O

start We also need to keep track of

the last character we’ve read

first

character
is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

first last last

character character
is O <:::::::> is R

In either case, the last character

character
is O

0

start

could either be an 0 or an R
R

first last <:::::::> last

character characier character
Is R is B Is O

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

first last last

character character character
is O Is O Q is R

start

We're allowed fo have states that represent
multiple pieces of information - notice how it you

c have the string 0, it's both true that the first

character is an 0 and the last character is an O

character characier character
Is R is B Is O

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

first last last

character character
is O <:::::::> is R

character
is O

0

start

Where should the transitions go?
R

first last <:::::::> last

character characier character
Is R is B Is O

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

() last last

character character
is O <:::::::> is R

As long as I'm still reading Os here,

first

character
is O

0

start

I should stay in this state because
the last character read was an 0
R

first last <:::::::> last

character characier character
Is R is B Is O

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

first () last last

character character character
is O .><:::::::> is R

is O
If I read an R, then I should

start

0
transition over here
R

first last <:::::::> last

character characier character
Is R is B Is O

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

first 0 last last

character character character
is O ..<:::::::> is R

Is O
Fill out the remaining transitions - for each state

start

0

go through the characters in = and ask yourself,
how would reading this character change what 1
know about my string?

R

first last last
character characier character
Is R is B Is O

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

0

R
@K
0 0

start

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

R
@K
0

Which of these states should

start

be accepting states?

0
() o
R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

0 last last
first character character
character
is O

iso R is R
Q-
0

If we end up in this state, that means both
the first and last character were 0s, so we

0

start

should accept.

0
()¢
F{ last

R

first

last
character) ; character
- F‘ character < o

is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last

character of w are the same }
() last last

character character

iso R is R
Q-
0

If we end up in this state, that means both
the first and last character were 0s, so we

first

character
is O

start

should accept.

0
()¢
F! last

R

first

last
character) ; character
- F‘ character < o

is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last

character of w are the same }
() last last

character character

iso R is R
Q-
0

Similarly, this state should also be
accepting because it means the first and

first

character
is O

start

last character were Rs

0
()¢
F{ last

R

first

last
character) ; character
- F‘ character < o

is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last

character of w are the same }
() last last

character character

iso R is R
Q-
0

Similarly, this state should also be
accepting because it means the first and

first

character
is O

start

last character were Rs

0
()¢
F{ last

character
is O

first

character
is R

last

F{ character
is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last

character of w are the same }
() last last

character character

iso R is R
Q-
0

If we end up in this state, that means the
first character was an 0 but the last

first

character
is O

start

character was an R, so we should reject.

0
()¢
F! last

character
is O

first

character
is R

last

F{ character
is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last

character of w are the same }
() last last

character character

iso R is R
Q-
0

This is also a rejecting state. It represents
strings where the first character was an R

first

character
is O

start

but the last character was an 0.

0
OX
F! last

character
is O

first

character
is R

last

F{ character
is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last

character of w are the same }
() last last

character character
Is O F{ Is R
@R
0

Lastly, the start state is also a rejecting

first

character
is O

start

state because we specified that € ¢ L

0
()¢
F{ last

character
is O

first

character
is R

last

F{ character
is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last

character of w are the same }
() last last

character character

iso R is R
Q-
0

first

character
is O

start

first

last
character) ;
< R F‘ character

is R

0
()¢
F! last

character
is O

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

0 last last
first character character
character
Is O

iso R is R
Q-
0

start

| Great question: why do we need these two states? I
0

R 0

first R last

character last character

. h 1 .
Is R R C aracter Is O
Is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

O \as’f
first character
character is O

is O

Why can‘t we have a DFA
that looks like this for this

start

language?

first

last
character) ;
< R I{ character

is R

Oreo Sandwiches

L =4{weZX*|w = ¢and the first and last
character of w are the same }

start

More Oreo Sandwiches

e Jet2={0,R}
Design a regex for the language

L ={weX*|w = ¢ and the characters of w
alternate between 0 and R }

More Oreo Sandwiches

e Jet2={0,R}
Design a regex for the language

L ={weX*|w = ¢ and the characters of w
alternate between 0 and R }

ORO € L OOR ¢ L
- ROROR € L - RRRRR ¢ L

OROROROR € L ROROOROR ¢ L

Designing Regexes

Write out some sample strings in the language and
look for patterns:

* Can I separate out the strings into two (or more)
categories?

- Union - find the pattern for each category, then union together

* Can I break this problem down into solving some smaller
subproblems?

- Concatenation - find the pattern for each piece/subproblem,
then concatenate together

* Is there some sort of repeating structure?

- Kleene star - find smallest repeating unit, then star that pattern

More Oreo Sandwiches

L ={weX*| w = ¢ and the characters of w

alternate between 0 and R }
0
R
OR
RO
ORO
ROR
OROR
RORO
ORORO
ROROR

Here’s one way we could
design this regex

More Oreo Sandwiches

L ={weX*| w = ¢ and the characters of w
alternate between 0 and R }

0

R

OR

RO
ORO
ROR
OROR
RORO
ORORO
ROROR

Can I separate out the
strings into two (or more)
categories?

 Union - find the
pattern for each
category, then union
together

More Oreo Sandwiches

L ={weX*| w = ¢ and the characters of w
alternate between 0 and R }

Starts with 0

0

OR
ORO
OROR
ORORO

Starts with R

R

RO
ROR
RORO
ROROR

Can I separate out the
strings into two (or more)
categories?

 Union - find the
pattern for each
category, then union
together

More Oreo Sandwiches

L ={weX*| w = ¢ and the characters of w
alternate between 0 and R }

Starts with 0

0

OR
ORO
OROR
ORORO

More Oreo Sandwiches

L ={weX*| w = ¢ and the characters of w
alternate between 0 and R }

Starts with 0

0

OR
ORO
OROR
ORORO

Can I break this problem
down into solving some
smaller subproblems?

 Concatenation - find
the pattern for each
piece/subproblem, then
concatenate together

More Oreo Sandwiches

L ={weX*| w = ¢ and the characters of w
alternate between 0 and R }

Starts with 0

0 Can I break this problem
down into solving some

OR smaller subproblems?

ORO Concatenation - find

OROR the pattern for each
piece/subproblem, then

ORORO concatenate together

O(sequence of ROs)(possibly another R)

More Oreo Sandwiches

L ={weX*| w = ¢ and the characters of w
alternate between 0 and R }

Starts with 0

0 Is there some sort of
OR repeating structure?

* Kleene star - find
ORO smallest repeating unit,
OROR then star that pattern
ORORO

O(RO)*R?

More Oreo Sandwiches

L ={weX*| w = ¢ and the characters of w
alternate between 0 and R }

Starts with 0 Starts with R

0 R

OR RO
ORO ROR
OROR RORO
ORORO ROROR

O(RO)*R? U R(OR)*0?

Next Time

 Applications of Regular Languages
 Answering “so what?”

* Intuiting Reqgular Languages
 What makes a language regular?

 The Myhill-Nerode Theorem

 The limits of regular languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186

