

Regular Expressions

Recap from Last Time

Regular Languages

● A language L is a regular language if
there is a DFA D such that (ℒ D) = L.

● Theorem: The following are equivalent:
● L is a regular language.
● There is a DFA for L.
● There is an NFA for L.

Language Concatenation

● If w ∈ Σ* and x ∈ Σ*, then wx is the
concatenation of w and x.

● If L₁ and L₂ are languages over Σ, the
concatenation of L₁ and L₂ is the language
L₁L₂ defned as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }
● Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb },

then

L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

● We can defne what it means to “exponentiate” a
language as follows:

● L0 = {ε}
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero strings

together is the empty string.
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by
concatenating n strings, then concatenating one more.

● Question: Why defne L0 = {ε}?
● Question: What is Ø0?

The Kleene Closure

● An important operation on languages is
the Kleene Closure, which is defned as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L* if ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of
concatenating zero or more strings in L
together, possibly with repetition.

● Question: What is Ø0?

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings

you can make if you have a
collection of stamps – one for each
string in L – and you form every
possible string that can be made

from those stamps.

Think of L* as the set of strings
you can make if you have a

collection of stamps – one for each
string in L – and you form every
possible string that can be made

from those stamps.

Closure Properties

● Theorem: If L₁ and L₂ are regular
languages over an alphabet Σ, then so are
the following languages:
● L₁
● L₁ ∪ L₂
● L₁ ∩ L₂
● L₁L₂
● L₁*

● These properties are called closure
properties of the regular languages.

New Stuf!

Another View of Regular Languages

Rethinking Regular Languages

● We currently have several tools for
showing a language L is regular:
● Construct a DFA for L.
● Construct an NFA for L.
● Combine several simpler regular languages

together via closure properties to form L.
● We have not spoken much of this last

idea.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● A bottom-up approach to the regular
languages.

Constructing Regular Languages

● Idea: Build up all regular languages as
follows:
● Start with a small set of simple languages we

already know to be regular.
● Using closure properties, combine these

simple languages together to form more
elaborate languages.

● A bottom-up approach to the regular
languages.

Regular Expressions

● Regular expressions are a way of
describing a language via a string
representation.

● They’re used extensively in software
systems for string processing and as the
basis for tools like grep and flex.

● Conceptually, regular expressions are
strings describing how to assemble a
larger language out of smaller pieces.

Atomic Regular Expressions

● The regular expressions begin with three
simple building blocks.

● The symbol Ø is a regular expression that
represents the empty language Ø.

● For any a ∈ Σ, the symbol a is a regular
expression for the language {a}.

● The symbol ε is a regular expression that
represents the language {ε}.
● Remember: {ε} ≠ Ø!
● Remember: {ε} ≠ ε!

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a
regular expression for the concatenation of the
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 ∪ R2 is
a regular expression for the union of the
languages of R1 and R2.

● If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

● If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Regular Expression Examples

● The regular expression hello∪goodbye
represents the regular language { hello,
goodbye }.

● The regular expression helloo* represents
the regular language { hello, helloo,
hellooo, … }.

● The regular expression (bye)* represents
the regular language { ε, bye, byebye,
byebyebye, … }.

Operator Precedence

● Regular expression operator precedence:

(R)

R*

R1R2

R1 ∪ R2

● So ab*c∪d is parsed as ((a(b*))c)∪d

Regular Expressions, Formally

● The language of a regular expression is the
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1R2) = (ℒ R1) (ℒ R2)

● ℒ(R1 ∪ R2) = (ℒ R1) ∪ (ℒ R2)
● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply
this recursive defnition

to

a(b∪c)((d))

and see what you get.

Worthwhile activity: Apply
this recursive defnition

to

a(b∪c)((d))

and see what you get.

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

(a b)*aa(a ∪ ∪ b)*

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

(a b)*∪ aa(a b)*∪

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

(a b)*∪ aa(a b)*∪

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

(a b)*∪ aa(a b)*∪

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a

substring }.

Σ*aaΣ*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

The length of
a string w is
denoted |w|

The length of
a string w is
denoted |w|

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

aaaa
baba
bbbb
baaa

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

ΣΣΣΣ

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Σ4

aaaa
baba
bbbb
baaa

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

Σ4

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

Here are some candidate regular expressions for
the language L. Which of these are correct?

Σ*aΣ*
b*ab* b*∪
b*(a ε)b*∪
b*a*b* b*∪
b*(a* ε)b*∪

Here are some candidate regular expressions for
the language L. Which of these are correct?

Σ*aΣ*
b*ab* b*∪
b*(a ε)b*∪
b*a*b* b*∪
b*(a* ε)b*∪

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)b*∪

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)∪ b*

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)∪ b*

bbbbabbb
bbbbbb
abbb
a

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ε)∪ b*

bbbbabbb
bbbbbb
abbb
a

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*a?b*

bbbbabbb
bbbbbb
abbb
a

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)+

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)+

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+(.a+)+

For Comparison

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

. a

q4
a

 a a

q5
. q6

q7

. a

 a

a

q8

@, .

@, . @ @, .
 @

@, .

q0
a

@, .
Σ

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Edge case: defne R⁰ = ε.

● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R ε)∪ , meaning

“zero or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or

more copies of R.”

Time-Out for Announcements!

Problem Sets

● Problem Set Four was due at 3:00PM
today.

● Problem Set Five goes out today. It’s due
next Friday at 3:00PM.
● Play around with DFAs, NFAs, regular

expressions, and their properties!
● Explore how all the discrete math topics

we’ve talked about so far come into play!

“Practice Midterm” Exam

● We’ve released a completely optional “practice
midterm” exam composed of what we think is a
good representative sample of older midterm
questions from across the years, covering
topics from the frst half of the course.

● There is no midterm in this course, but we
recommend taking some time in the next week
to actually sit down and try taking this exam to
check your understanding of what we’ve
covered so far.

Back to CS103!

The Power of Regular Expressions

Theorem: If R is a regular expression,
then (ℒ R) is regular.

Proof idea: Use induction!
● The atomic regular expressions all represent

regular languages.
● The combination steps represent closure

properties.
● So anything you can make from them must

be regular!

Thompson’s Algorithm

● In practice, many regex matchers use an
algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAs).
● Read Sipser if you’re curious!

● Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of
Unix!

The Power of Regular Expressions

Theorem: If L is a regular language,
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

Generalizing NFAs

q₄

q₀

q₂

start

ε

 b

a

Σ

b

q₁

q₃

Σ

These are all
regular expressions!

These are all
regular expressions!

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

Note: Actual NFAs
aren't allowed to have
transitions like these.
This is just a thought

experiment.

Note: Actual NFAs
aren't allowed to have
transitions like these.
This is just a thought

experiment.

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Generalizing NFAs

q₀
start ab b∪ q₁

q₂ q₃a*b?a*

a ab*

a a a b a a b b b

Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular

expressions.

Generalizing NFAs

q₀
start ab b∪ q₁

Generalizing NFAs

q₀
start ab b∪ q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start ab b∪ q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Is there a simple
regular expression for
the language of this
generalized NFA?

Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple
regular expression for
the language of this
generalized NFA?

Is there a simple
regular expression for
the language of this
generalized NFA?

Key Idea 2: If we can convert an NFA into
a generalized NFA that looks like this...

...then we can easily read of a regular
expression for the original NFA.

q₀
start some-regex q₁

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Here, R , ₁₁ R , ₁₂ R , and ₂₁ R are ₂₂

arbitrary regular expressions.
Here, R , ₁₁ R , ₁₂ R , and ₂₁ R are ₂₂

arbitrary regular expressions.

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Question: Can we get a clean
regular expression from this

NFA?

Question: Can we get a clean
regular expression from this

NFA?

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Key Idea 3: Somehow transform
this NFA so that it looks like

this:

Key Idea 3: Somehow transform
this NFA so that it looks like

this:
q₀

start some-regex q₁

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

The frst step is going to be a
bit weird.

The frst step is going to be a
bit weird.

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

q2
start

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

q2
start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

Could we
eliminate this

state from the
NFA?

Could we
eliminate this

state from the
NFA?

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

Note: We're using
concatenation and

Kleene closure in order
to skip this state.

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2

R22

start ε

ε R11* R12

R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R21 R11* R12

R22

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 ∪ R21 R11* R12

Note: We're using union
to combine these

transitions together.

Note: We're using union
to combine these

transitions together.

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

What should we put
on this transition?

What should we put
on this transition?

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 ∪ R21R11*R12)* ε

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 ∪ R21R11*R12)*

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2

The Construction at a Glance

● Start with an NFA N for the language L.
● Add a new start state qs and accept state qf to the

NFA.
● Add an ε-transition from qs to the old start state of N.

● Add ε-transitions from each accepting state of N to qf,
then mark them as not accepting.

● Repeatedly remove states other than qs and qf
from the NFA by “shortcutting” them until only
two states remain: qs and qf.

● The transition from qs to qf is then a regular
expression for the NFA.

Eliminating a State

● To eliminate a state q from the automaton, do the following
for each pair of states q₀ and q₁, where there's a transition
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.

● Let Rout be the regex on the transition from q to q₁.

● If there is a regular expression Rstay on a transition from q
to itself, add a new transition from q₀ to q₁ labeled
((Rin)(Rstay)*(Rout)).

● If there isn't, add a new transition from q₀ to q₁ labeled
((Rin)(Rout))

● If a pair of states has multiple transitions between them
labeled R₁, R₂, …, Rₖ, replace them with a single transition
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

Thompson's algorithm

Theorem: The following are all equivalent:

 · L is a regular language.
 · There is a DFA D such that (ℒ D) = L.
 · There is an NFA N such that (ℒ N) = L.
 · There is a regular expression R such that (ℒ R) = L.

Why This Matters

● The equivalence of regular expressions and
fnite automata has practical relevance.
● Tools like grep and flex that use regular

expressions capture all the power available via
DFAs and NFAs.

● This also is hugely theoretically signifcant:
the regular languages can be assembled
“from scratch” using a small number of
operations!

Let’s take a fve minute break!

Oreo Sandwiches

For simplicity, let’s just use a single
character for the “cream” part of the

Oreo :)

For simplicity, let’s just use a single
character for the “cream” part of the

Oreo :)

● Let Σ = { O, R }

Oreo Sandwiches

● Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the frst and last
character of w are the same }

Oreo Sandwiches

● Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the frst and last
character of w are the same }

ORO ∈ L
●

 ROOOR ∈ L
OROORORRO ∈ L

OR ∉ L
●

 OOOOOR ∉ L
RORORORO ∉ L

Designing DFAs

● States – pieces of information
● What do I have to keep track of in the

course of fguring out whether a string is in
this language?

● Transitions – updating state
● From the state I’m currently in, what do I

know about my string? How would reading
this character change what I know?

An Analogy

BobAlice

961820

Imagine a scenario where Bob is thinking of a
string and Alice has to fgure out whether that
string is in a particular language

L = { w is divisible by 5 }

An Analogy

BobAlice

961820

The catch: Bob can only send Alice one character at
a time, and Alice doesn’t know how long the string
is until Bob tells her that he’s done sending input

L = { w is divisible by 5 }

9

An Analogy

BobAlice

961820

What does Alice need to remember
about the characters she’s receiving
from Bob?

L = { w is divisible by 5 }

9

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

9

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

6

9

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

6

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

. . .

An Analogy

BobAlice

961820

Eventually Bob gets to the end of his
string and sends Alice a signal that
he’s done sending input

L = { w is divisible by 5 }

0

<end>

An Analogy

BobAlice

961820

At this point, Alice just has to look at the
last digit she wrote down and if it’s a 5 or
0, Bob’s string belongs in the language

L = { w is divisible by 5 }

0

<end>

DFA Design Strategy

1. Answer the question “What do I have to keep track of in the
course of fguring out whether a string is in this language?”

We need to keep track of the last character.

2. Create a state that represents each possible answer to that
question.

The last character could be any digit 0-9. The states for 0 and 5
are accepting states

3. From each state, go through all of the characters and answer the
question “How would reading this character change what I know
about my string?” and draw transitions to the appropriate states.

Reading a character d should transition to the state representing “the
last character of the string is d”.

DFA Design Strategy

1. Answer the question “What do I have to keep track of in the
course of fguring out whether a string is in this language?”

We need to keep track of the last character.

2. Create a state that represents each possible answer to that
question.

The last character could be any digit 0-9. The states for 0 and 5
are accepting states.

3. From each state, go through all of the characters and answer the
question “How would reading this character change what I know
about my string?” and draw transitions to the appropriate states.

Reading a character d should transition to the state representing “the
last character of the string is d”.

L = { w is divisible by 5 }

Oreo Sandwiches

● Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the frst and last
character of w are the same }

What do I have to keep track of in the
course of fguring out whether a string is

in this language?

What do I have to keep track of in the
course of fguring out whether a string is

in this language?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

● We need to keep track of the very frst character
● And we need to keep track of the last character

we’ve read so that when we reach the end, we
can check whether the frst and last characters
were the same

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

Remember that each state should represent
a piece of information. We’ll annotate what

each state represents in blue.

Remember that each state should represent
a piece of information. We’ll annotate what

each state represents in blue.

ε

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start We need to keep track of the
very frst character, which
could either be an O or an R

ε

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start We need to keep track of the
very frst character, which
could either be an O or an R

frst
character
is O

ε

frst
character
is R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

O

If I’m in the start state and
I read an O, I should
transition to this state

frst
character
is R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

Likewise if I’m in the start
state and I read an R, I
should transition to this state

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

We also need to keep track of
the last character we’ve read

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

In either case, the last character
could either be an O or an R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

We’re allowed to have states that represent
multiple pieces of information – notice how if you
have the string O, it’s both true that the frst

character is an O and the last character is an O

We’re allowed to have states that represent
multiple pieces of information – notice how if you
have the string O, it’s both true that the frst

character is an O and the last character is an O

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

Where should the transitions go?

last
character
is R

last
character
is O

last
character
is O

last
character
is R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

As long as I’m still reading Os here,
I should stay in this state because
the last character read was an O

last
character
is R

last
character
is O

last
character
is O

last
character
is R

O

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

If I read an R, then I should
transition over here

last
character
is R

last
character
is O

last
character
is O

last
character
is R

O

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

ε

frst
character
is O

frst
character
is R

O

R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

O

R

Fill out the remaining transitions – for each state
go through the characters in Σ and ask yourself,
how would reading this character change what I

know about my string?

Fill out the remaining transitions – for each state
go through the characters in Σ and ask yourself,
how would reading this character change what I

know about my string?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Which of these states should
be accepting states?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

If we end up in this state, that means both
the frst and last character were Os, so we
should accept.

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

If we end up in this state, that means both
the frst and last character were Os, so we
should accept.

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

Similarly, this state should also be
accepting because it means the frst and
last character were Rs

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

Similarly, this state should also be
accepting because it means the frst and
last character were Rs

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

If we end up in this state, that means the
frst character was an O but the last
character was an R, so we should reject.

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

This is also a rejecting state. It represents
strings where the frst character was an R
but the last character was an O.

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

Lastly, the start state is also a rejecting
state because we specifed that ε ∉ L

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst
character
is O

frst
character
is R

last
character
is R

last
character
is O

last
character
is O

last
character
is R

ε

Great question: why do we need these two states?Great question: why do we need these two states?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O

O

R

frst
character
is O

frst
character
is R

last
character
is O

last
character
is R

ε

R
Why can’t we have a DFA

that looks like this for this
language?

Why can’t we have a DFA
that looks like this for this

language?

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

More Oreo Sandwiches

● Let Σ = { O, R }

Design a regex for the language

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between O and R }

More Oreo Sandwiches

● Let Σ = { O, R }

Design a regex for the language

L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between O and R }

ORO ∈ L
●

 ROROR ∈ L
OROROROR ∈ L

OOR ∉ L
●

 RRRRR ∉ L
ROROOROR ∉ L

Designing Regexes

Write out some sample strings in the language and
look for patterns:

● Can I separate out the strings into two (or more)
categories?
– Union – fnd the pattern for each category, then union together

● Can I break this problem down into solving some smaller

subproblems?
– Concatenation - fnd the pattern for each piece/subproblem,

then concatenate together

● Is there some sort of repeating structure?
– Kleene star – fnd smallest repeating unit, then star that pattern

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between O and R }

O

R

OR

RO

ORO

ROR

OROR

RORO

ORORO

ROROR

...

Here’s one way we could
design this regex

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between O and R }

O

R

OR

RO

ORO

ROR

OROR

RORO

ORORO

ROROR

...

Can I separate out the
strings into two (or more)
categories?

● Union – fnd the
pattern for each
category, then union
together

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Can I separate out the
strings into two (or more)
categories?

● Union – fnd the
pattern for each
category, then union
together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between O and R }

O

OR

ORO

OROR

ORORO

...

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Can I break this problem
down into solving some
smaller subproblems?

● Concatenation - fnd
the pattern for each
piece/subproblem, then
concatenate together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Can I break this problem
down into solving some
smaller subproblems?

● Concatenation - fnd
the pattern for each
piece/subproblem, then
concatenate together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

O(sequence of ROs)(possibly another R)

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Is there some sort of
repeating structure?

● Kleene star – fnd
smallest repeating unit,
then star that pattern

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

O(RO)*R?

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w
alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Starts with O

O(RO)*R? ∪ R(OR)*O?

R

RO

ROR

RORO

ROROR

...

Starts with R

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Myhill-Nerode Theorem
● The limits of regular languages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186

