
  

Regular Expressions



  

Recap from Last Time



  

Regular Languages

● A language L is a regular language if 
there is a DFA D such that (ℒ D) = L.

● Theorem: The following are equivalent:
● L is a regular language.
● There is a DFA for L.
● There is an NFA for L.



  

Language Concatenation

● If w ∈ Σ* and x ∈ Σ*, then wx is the 
concatenation of w and x.

● If L₁ and L₂ are languages over Σ, the 
concatenation of L₁ and L₂ is the language 
L₁L₂ defned as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }
● Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb }, 

then

L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }



  

Lots and Lots of Concatenation

● Consider the language L = { aa, b }
● LL is the set of strings formed by concatenating pairs of 

strings in L.

{ aaaa, aab, baa, bb }
● LLL is the set of strings formed by concatenating triples 

of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
● LLLL is the set of strings formed by concatenating 

quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



  

Language Exponentiation

● We can defne what it means to “exponentiate” a 
language as follows:

● L0 = {ε}
● The set containing just the empty string.
● Idea: Any string formed by concatenating zero strings 

together is the empty string.
● Ln+1 = LLn

● Idea: Concatenating (n+1) strings together works by 
concatenating n strings, then concatenating one more.

● Question: Why defne L0 = {ε}?
● Question: What is Ø0?



  

The Kleene Closure

● An important operation on languages is 
the Kleene Closure, which is defned as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }
● Mathematically:

w ∈ L*     if     ∃n ∈ ℕ. w ∈ Ln

● Intuitively, all possible ways of 
concatenating zero or more strings in L 
together, possibly with repetition.

● Question: What is Ø0?



  

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

}
Think of L* as the set of strings 

you can make if you have a 
collection of stamps – one for each 
string in L – and you form every 
possible string that can be made 

from those stamps.

Think of L* as the set of strings 
you can make if you have a 

collection of stamps – one for each 
string in L – and you form every 
possible string that can be made 

from those stamps.



  

Closure Properties

● Theorem: If L₁ and L₂ are regular 
languages over an alphabet Σ, then so are 
the following languages:
● L₁ 
● L₁ ∪ L₂ 
● L₁ ∩ L₂ 
● L₁L₂
● L₁*

● These properties are called closure 
properties of the regular languages.



  

New Stuf!



  

Another View of Regular Languages



  

Rethinking Regular Languages

● We currently have several tools for 
showing a language L is regular:
● Construct a DFA for L.
● Construct an NFA for L.
● Combine several simpler regular languages 

together via closure properties to form L.
● We have not spoken much of this last 

idea.



  

Constructing Regular Languages

● Idea: Build up all regular languages as 
follows:
● Start with a small set of simple languages we 

already know to be regular.
● Using closure properties, combine these 

simple languages together to form more 
elaborate languages.

● A bottom-up approach to the regular 
languages.



  

Constructing Regular Languages

● Idea: Build up all regular languages as 
follows:
● Start with a small set of simple languages we 

already know to be regular.
● Using closure properties, combine these 

simple languages together to form more 
elaborate languages.

● A bottom-up approach to the regular 
languages.



  

Regular Expressions

● Regular expressions are a way of 
describing a language via a string 
representation.

● They’re used extensively in software 
systems for string processing and as the 
basis for tools like grep and flex.

● Conceptually, regular expressions are 
strings describing how to assemble a 
larger language out of smaller pieces.



  

Atomic Regular Expressions

● The regular expressions begin with three 
simple building blocks.

● The symbol Ø is a regular expression that 
represents the empty language Ø.

● For any a ∈ Σ, the symbol a is a regular 
expression for the language {a}.

● The symbol ε is a regular expression that 
represents the language {ε}.
● Remember: {ε} ≠ Ø!
● Remember: {ε} ≠ ε!



  

Compound Regular Expressions

● If R1 and R2 are regular expressions, R1R2 is a 
regular expression for the concatenation of the 
languages of R1 and R2.

● If R1 and R2 are regular expressions, R1 ∪ R2 is 
a regular expression for the union of the 
languages of R1 and R2.

● If R is a regular expression, R* is a regular 
expression for the Kleene closure of the 
language of R.

● If R is a regular expression, (R) is a regular 
expression with the same meaning as R.



  

Regular Expression Examples

● The regular expression hello∪goodbye 
represents the regular language { hello, 
goodbye }.

● The regular expression helloo* represents 
the regular language { hello, helloo, 
hellooo, … }.

● The regular expression (bye)* represents 
the regular language { ε, bye, byebye, 
byebyebye, … }.



  

Operator Precedence

● Regular expression operator precedence: 

(R)

R*

R1R2

R1 ∪ R2 

● So ab*c∪d is parsed as ((a(b*))c)∪d



  

Regular Expressions, Formally

● The language of a regular expression is the 
language described by that regular expression.

● Formally:
● ℒ(ε) = {ε}
● ℒ(Ø) = Ø
● ℒ(a) = {a}

● ℒ(R1R2) = (ℒ R1) (ℒ R2)

● ℒ(R1 ∪ R2) = (ℒ R1) ∪ (ℒ R2)
● ℒ(R*) = (ℒ R)*
● ℒ((R)) = (ℒ R)

Worthwhile activity: Apply 
this recursive defnition 

to

a(b∪c)((d))

and see what you get.

Worthwhile activity: Apply 
this recursive defnition 

to

a(b∪c)((d))

and see what you get.



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.

(a  b)*aa(a ∪ ∪ b)*
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Designing Regular Expressions
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substring }.
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Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.

(a  b)*∪ aa(a  b)*∪

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains aa as a 

substring }.

Σ*aaΣ*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.
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Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ
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Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

aaaa
baba
bbbb
baaa



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

ΣΣΣΣ



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

Σ4

aaaa
baba
bbbb
baaa



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

Σ4



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

Here are some candidate regular expressions for 
the language L. Which of these are correct?

 

Σ*aΣ*
b*ab*  b*∪
b*(a  ε)b*∪
b*a*b*  b*∪
b*(a*  ε)b*∪

Here are some candidate regular expressions for 
the language L. Which of these are correct?

 

Σ*aΣ*
b*ab*  b*∪
b*(a  ε)b*∪
b*a*b*  b*∪
b*(a*  ε)b*∪



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a  ε)b*∪



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a  ε)∪ b*



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a  ε)∪ b*

bbbbabbb
bbbbbb
abbb
a



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*(a  ε)∪ b*

bbbbabbb
bbbbbb
abbb
a



  

Designing Regular Expressions

● Let Σ = {a, b}.
● Let L = { w ∈ Σ* | w contains at most one a }.

b*a?b*

bbbbabbb
bbbbbb
abbb
a



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.
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A More Elaborate Design
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A More Elaborate Design
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.
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first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”
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A More Elaborate Design
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.
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A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)+



  

A More Elaborate Design

● Let Σ = { a, ., @ }, where a represents 
“some letter.”

● Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+(.a+)+



  

For Comparison

a+(.a+)*@a+(.a+)+

q1

start
q3

@

q2

.       a

q4
a

       a        a

q5
. q6

q7

.       a

       a

a

q8

@, .

@, .             @            @, .
 @

@, .

q0
a

@, .
Σ



  

Shorthand Summary

● Rn is shorthand for RR … R (n times).
● Edge case: defne R⁰ = ε.

● Σ is shorthand for “any character in Σ.”
● R? is shorthand for (R  ε)∪ , meaning 

“zero or one copies of R.”
● R⁺ is shorthand for RR*, meaning “one or 

more copies of R.”



  

Time-Out for Announcements!



  

Problem Sets

● Problem Set Four was due at 3:00PM 
today.

● Problem Set Five goes out today. It’s due 
next Friday at 3:00PM.
● Play around with DFAs, NFAs, regular 

expressions, and their properties!
● Explore how all the discrete math topics 

we’ve talked about so far come into play!



  

“Practice Midterm” Exam

● We’ve released a completely optional “practice 
midterm” exam composed of what we think is a 
good representative sample of older midterm 
questions from across the years, covering 
topics from the frst half of the course.

● There is no midterm in this course, but we 
recommend taking some time in the next week 
to actually sit down and try taking this exam to 
check your understanding of what we’ve 
covered so far. 



  

Back to CS103!



  

The Power of Regular Expressions

Theorem: If R is a regular expression, 
then (ℒ R) is regular.

Proof idea: Use induction!
● The atomic regular expressions all represent 

regular languages.
● The combination steps represent closure 

properties.
● So anything you can make from them must 

be regular!



  

Thompson’s Algorithm

● In practice, many regex matchers use an 
algorithm called Thompson's algorithm 
to convert regular expressions into NFAs 
(and, from there, to DFAs).
● Read Sipser if you’re curious!

● Fun fact: the “Thompson” here is Ken 
Thompson, one of the co-inventors of 
Unix!



  

The Power of Regular Expressions

Theorem: If L is a regular language, 
then there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an 
arbitrary NFA into a regular expression.



  

Generalizing NFAs

q₄

q₀

q₂

start

ε   

  b

a

Σ

b

q₁

q₃

Σ  
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q₁
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Σ  



  

Generalizing NFAs

q₄

q₀

q₂

start

ε   

  b

a

Σ

b

q₁

q₃

Σ  

These are all 
regular expressions!

These are all 
regular expressions!



  

Generalizing NFAs

q₀
start ab  b∪ q₁

q₂ q₃a*b?a*

a   ab*    

Note: Actual NFAs 
aren't allowed to have 
transitions like these. 
This is just a thought 

experiment.

Note: Actual NFAs 
aren't allowed to have 
transitions like these. 
This is just a thought 

experiment.



  

Generalizing NFAs
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Generalizing NFAs

q₀
start ab  b∪ q₁

q₂ q₃a*b?a*

a   ab*    

a a a b a a b b b



  

Key Idea 1: Imagine that we can label 
transitions in an NFA with arbitrary regular 

expressions.
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Generalizing NFAs

q₀
start a+(.a+)*@a+(.a+)+

q₁

Is there a simple 
regular expression for 
the language of this 
generalized NFA?

Is there a simple 
regular expression for 
the language of this 
generalized NFA?



  

Key Idea 2: If we can convert an NFA into 
a generalized NFA that looks like this...

...then we can easily read of a regular 
expression for the original NFA.

q₀
start some-regex q₁



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22
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From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22
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Here, R , ₁₁ R , ₁₂ R , and ₂₁ R  are ₂₂

arbitrary regular expressions.
Here, R , ₁₁ R , ₁₂ R , and ₂₁ R  are ₂₂

arbitrary regular expressions.



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Question: Can we get a clean 
regular expression from this 

NFA?

Question: Can we get a clean 
regular expression from this 

NFA?



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

Key Idea 3: Somehow transform 
this NFA so that it looks like 

this:

Key Idea 3: Somehow transform 
this NFA so that it looks like 

this:
q₀

start some-regex q₁



  

From NFAs to Regular Expressions

q1
start q2

R12

R21

R11 R22

q2

The frst step is going to be a
bit weird.

The frst step is going to be a
bit weird.



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

q2
start
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From NFAs to Regular Expressions

qs qfqfq1 q2
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R11 R22

start ε ε
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eliminate this 

state from the 
NFA?
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eliminate this 

state from the 
NFA?
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From NFAs to Regular Expressions
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ε R11* R12

Note: We're using 
concatenation and 

Kleene closure in order 
to skip this state.
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to skip this state.
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qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12
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From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11 R22

start ε ε

ε R11* R12

R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2

R22

start ε

ε R11* R12

R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R21 R11* R12

R22



  

From NFAs to Regular Expressions

qs qfqfq2
start ε

R11* R12

R22 ∪ R21 R11* R12

Note: We're using union 
to combine these 

transitions together.

Note: We're using union 
to combine these 

transitions together.



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

What should we put 
on this transition?

What should we put 
on this transition?



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqfq2
start εR11* R12

R22 ∪ R21 R11* R12

R11* R12 (R22 ∪ R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 ∪ R21R11*R12)* ε



  

From NFAs to Regular Expressions

qs qfqf
start

R11* R12 (R22 ∪ R21R11*R12)*



  

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*



  

From NFAs to Regular Expressions

qs qfqf
start R11* R12 (R22 ∪ R21R11*R12)*

q1
start q2

R12

R21

R11 R22

q2



  

The Construction at a Glance

● Start with an NFA N for the language L.
● Add a new start state qs and accept state qf to the 

NFA.
● Add an ε-transition from qs to the old start state of N.

● Add ε-transitions from each accepting state of N to qf, 
then mark them as not accepting.

● Repeatedly remove states other than qs and qf 
from the NFA by “shortcutting” them until only 
two states remain: qs and qf.

● The transition from qs to qf is then a regular 
expression for the NFA.



  

Eliminating a State

● To eliminate a state q from the automaton, do the following 
for each pair of states q₀ and q₁, where there's a transition 
from q₀ into q and a transition from q into q₁:

● Let Rin be the regex on the transition from q₀ to q.

● Let Rout be the regex on the transition from q to q₁.

● If there is a regular expression Rstay on a transition from q 
to itself, add a new transition from q₀ to q₁ labeled
((Rin)(Rstay)*(Rout)).

● If there isn't, add a new transition from q₀ to q₁ labeled 
((Rin)(Rout))

● If a pair of states has multiple transitions between them 
labeled R₁, R₂, …, Rₖ, replace them with a single transition 
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.



  

Our Transformations

DFA NFA Regexp

direct conversion

subset construction

state elimination

Thompson's algorithm



  

Theorem: The following are all equivalent:
 

  · L is a regular language.
  · There is a DFA D such that (ℒ D) = L.
  · There is an NFA N such that (ℒ N) = L.
  · There is a regular expression R such that (ℒ R) = L.



  

Why This Matters

● The equivalence of regular expressions and 
fnite automata has practical relevance.
● Tools like grep and flex that use regular 

expressions capture all the power available via 
DFAs and NFAs.

● This also is hugely theoretically signifcant: 
the regular languages can be assembled 
“from scratch” using a small number of 
operations!



  

Let’s take a fve minute break!



  



  

Oreo Sandwiches

For simplicity, let’s just use a single 
character for the “cream” part of the 

Oreo :)

For simplicity, let’s just use a single 
character for the “cream” part of the 

Oreo :)

● Let Σ = { O, R }



  

Oreo Sandwiches

● Let Σ = { O, R }

Design a DFA for the language 

L = { w ∈ Σ* | w ≠ ε and the frst and last 
character of w are the same }



  

Oreo Sandwiches

● Let Σ = { O, R }

Design a DFA for the language 

L = { w ∈ Σ* | w ≠ ε and the frst and last 
character of w are the same }

ORO ∈ L
●

 ROOOR ∈ L
OROORORRO ∈ L

OR ∉ L
●

 OOOOOR ∉ L
RORORORO ∉ L



  

Designing DFAs

● States – pieces of information
● What do I have to keep track of in the 

course of fguring out whether a string is in 
this language? 

● Transitions – updating state
● From the state I’m currently in, what do I 

know about my string? How would reading 
this character change what I know?



  

An Analogy

BobAlice

961820

Imagine a scenario where Bob is thinking of a 
string and Alice has to fgure out whether that 
string is in a particular language

L = { w is divisible by 5 }



  

An Analogy

BobAlice

961820

The catch: Bob can only send Alice one character at 
a time, and Alice doesn’t know how long the string 
is until Bob tells her that he’s done sending input

L = { w is divisible by 5 }

9



  

An Analogy

BobAlice

961820

What does Alice need to remember 
about the characters she’s receiving 
from Bob?

L = { w is divisible by 5 }

9



  

An Analogy

BobAlice

961820

Key insight: Alice only needs to 
remember the last character she 
received from Bob

L = { w is divisible by 5 }

9



  

An Analogy

BobAlice

961820

Key insight: Alice only needs to 
remember the last character she 
received from Bob

L = { w is divisible by 5 }

6

9



  

An Analogy

BobAlice

961820

Key insight: Alice only needs to 
remember the last character she 
received from Bob

L = { w is divisible by 5 }

6



  

An Analogy

BobAlice

961820

Key insight: Alice only needs to 
remember the last character she 
received from Bob

L = { w is divisible by 5 }

. . .



  

An Analogy

BobAlice

961820

Eventually Bob gets to the end of his 
string and sends Alice a signal that 
he’s done sending input

L = { w is divisible by 5 }

0

<end>



  

An Analogy

BobAlice

961820

At this point, Alice just has to look at the 
last digit she wrote down and if it’s a 5 or 
0, Bob’s string belongs in the language 

L = { w is divisible by 5 }

0

<end>



  

DFA Design Strategy

1. Answer the question “What do I have to keep track of in the 
course of fguring out whether a string is in this language?”

We need to keep track of the last character. 

2. Create a state that represents each possible answer to that 
question.

The last character could be any digit 0-9. The states for 0 and 5 
are accepting states 

3. From each state, go through all of the characters and answer the 
question “How would reading this character change what I know 
about my string?” and draw transitions to the appropriate states.

Reading a character d should transition to the state representing “the 
last character of the string is d”. 



  

DFA Design Strategy

1. Answer the question “What do I have to keep track of in the 
course of fguring out whether a string is in this language?”

We need to keep track of the last character. 

2. Create a state that represents each possible answer to that 
question.

The last character could be any digit 0-9. The states for 0 and 5 
are accepting states. 

3. From each state, go through all of the characters and answer the 
question “How would reading this character change what I know 
about my string?” and draw transitions to the appropriate states.

Reading a character d should transition to the state representing “the 
last character of the string is d”. 

L = { w is divisible by 5 }



  

Oreo Sandwiches

● Let Σ = { O, R }

Design a DFA for the language 

L = { w ∈ Σ* | w ≠ ε and the frst and last 
character of w are the same }

What do I have to keep track of in the 
course of fguring out whether a string is 

in this language?

What do I have to keep track of in the 
course of fguring out whether a string is 

in this language?



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

● We need to keep track of the very frst character
● And we need to keep track of the last character 

we’ve read so that when we reach the end, we 
can check whether the frst and last characters 
were the same



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

Remember that each state should represent 
a piece of information. We’ll annotate what 

each state represents in blue.

Remember that each state should represent 
a piece of information. We’ll annotate what 

each state represents in blue.

ε



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start We need to keep track of the 
very frst character, which 
could either be an O or an R 

ε



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start We need to keep track of the 
very frst character, which 
could either be an O or an R 

frst 
character 
is O

ε

frst 
character 
is R



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

ε

frst 
character 
is O

O

If I’m in the start state and 
I read an O, I should 
transition to this state

frst 
character 
is R



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

ε

frst 
character 
is O

frst 
character 
is R

O

Likewise if I’m in the start 
state and I read an R, I 
should transition to this state

R



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

ε

frst 
character 
is O

frst 
character 
is R

O

R

We also need to keep track of 
the last character we’ve read



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

ε

frst 
character 
is O

frst 
character 
is R

O

R

In either case, the last character 
could either be an O or an R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

ε

frst 
character 
is O

frst 
character 
is R

O

R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

We’re allowed to have states that represent 
multiple pieces of information – notice how if you 
have the string O, it’s both true that the frst 

character is an O and the last character is an O  

We’re allowed to have states that represent 
multiple pieces of information – notice how if you 
have the string O, it’s both true that the frst 

character is an O and the last character is an O  



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

ε

frst 
character 
is O

frst 
character 
is R

O

R

Where should the transitions go?

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

ε

frst 
character 
is O

frst 
character 
is R

O

R

As long as I’m still reading Os here, 
I should stay in this state because 
the last character read was an O

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

O



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

ε

frst 
character 
is O

frst 
character 
is R

O

R

If I read an R, then I should 
transition over here

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

O

R



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

ε

frst 
character 
is O

frst 
character 
is R

O

R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

O

R

Fill out the remaining transitions – for each state 
go through the characters in Σ and ask yourself, 
how would reading this character change what I 

know about my string?

Fill out the remaining transitions – for each state 
go through the characters in Σ and ask yourself, 
how would reading this character change what I 

know about my string?



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

Which of these states should 
be accepting states?



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst 
character 
is O

frst 
character 
is R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

ε

If we end up in this state, that means both 
the frst and last character were Os, so we 
should accept.



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst 
character 
is O

frst 
character 
is R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

ε

If we end up in this state, that means both 
the frst and last character were Os, so we 
should accept.



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst 
character 
is O

frst 
character 
is R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

ε

Similarly, this state should also be 
accepting because it means the frst and 
last character were Rs 



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst 
character 
is O

frst 
character 
is R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

ε

Similarly, this state should also be 
accepting because it means the frst and 
last character were Rs 



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst 
character 
is O

frst 
character 
is R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

ε

If we end up in this state, that means the 
frst character was an O but the last 
character was an R, so we should reject.



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst 
character 
is O

frst 
character 
is R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

ε

This is also a rejecting state. It represents 
strings where the frst character was an R 
but the last character was an O.



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst 
character 
is O

frst 
character 
is R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

ε

Lastly, the start state is also a rejecting 
state because we specifed that ε ∉ L



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst 
character 
is O

frst 
character 
is R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

ε



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R

frst 
character 
is O

frst 
character 
is R

last 
character 
is R

last 
character 
is O

last 
character 
is O

last 
character 
is R

ε

Great question: why do we need these two states?Great question: why do we need these two states?



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O

O

R

frst 
character 
is O

frst 
character 
is R

last 
character 
is O

last 
character 
is R

ε

R
Why can’t we have a DFA 

that looks like this for this 
language?

Why can’t we have a DFA 
that looks like this for this 

language?



  

Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the frst and last 

character of w are the same }

start

O

R

O
R

O
R

O

R

O

R



  

More Oreo Sandwiches

● Let Σ = { O, R } 

Design a regex for the language 

L = { w ∈ Σ* | w ≠ ε and the characters of w 
alternate between O and R }



  

More Oreo Sandwiches

● Let Σ = { O, R } 

Design a regex for the language 

L = { w ∈ Σ* | w ≠ ε and the characters of w 
alternate between O and R }

ORO ∈ L
●

 ROROR ∈ L
OROROROR ∈ L

OOR ∉ L
●

 RRRRR ∉ L
ROROOROR ∉ L



  

Designing Regexes

Write out some sample strings in the language and 
look for patterns:

● Can I separate out the strings into two (or more) 
categories?
– Union – fnd the pattern for each category, then union together

 
● Can I break this problem down into solving some smaller 

subproblems?
– Concatenation - fnd the pattern for each piece/subproblem, 

then concatenate together

● Is there some sort of repeating structure?
– Kleene star – fnd smallest repeating unit, then star that pattern



  

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w 
alternate between O and R } 

O

R

OR

RO

ORO

ROR

OROR

RORO

ORORO

ROROR

...

Here’s one way we could 
design this regex



  

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w 
alternate between O and R } 

O

R

OR

RO

ORO

ROR

OROR

RORO

ORORO

ROROR

...

Can I separate out the 
strings into two (or more) 
categories?

● Union – fnd the 
pattern for each 
category, then union 
together



  

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w 
alternate between O and R } 

O

OR

ORO

OROR

ORORO

...

Can I separate out the 
strings into two (or more) 
categories?

● Union – fnd the 
pattern for each 
category, then union 
together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R 



  

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w 
alternate between O and R } 

O

OR

ORO

OROR

ORORO

...

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R 



  

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w 
alternate between O and R } 

O

OR

ORO

OROR

ORORO

...

Can I break this problem 
down into solving some 
smaller subproblems?

● Concatenation - fnd 
the pattern for each 
piece/subproblem, then 
concatenate together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R 



  

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w 
alternate between O and R } 

O

OR

ORO

OROR

ORORO

...

Can I break this problem 
down into solving some 
smaller subproblems?

● Concatenation - fnd 
the pattern for each 
piece/subproblem, then 
concatenate together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R 

O(sequence of ROs)(possibly another R)



  

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w 
alternate between O and R } 

O

OR

ORO

OROR

ORORO

...

Is there some sort of 
repeating structure?

● Kleene star – fnd 
smallest repeating unit, 
then star that pattern

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R 

O(RO)*R?



  

More Oreo Sandwiches
L = { w ∈ Σ* | w ≠ ε and the characters of w 
alternate between O and R } 

O

OR

ORO

OROR

ORORO

...

Starts with O 

O(RO)*R?   ∪   R(OR)*O?

R

RO

ROR

RORO

ROROR

...

Starts with R 



  

Next Time

● Applications of Regular Languages
● Answering “so what?”

● Intuiting Regular Languages
● What makes a language regular?

● The Myhill-Nerode Theorem
● The limits of regular languages.
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